Standard Particle Swarm Optimisation
ثبت نشده
چکیده
Since 2006, three successive standard PSO versions have been put on line on the Particle Swarm Central [10], namely SPSO 2006, 2007, and 2011. The basic principles of all three versions can be informally described the same way, and in general, this statement holds for almost all PSO variants. However, the exact formulae are slightly di erent, because they took advantage of latest theoretical analysis available at the time they were designed.
منابع مشابه
An Energy Efficient Control Strategy for Induction Machines Based on Advanced Particle Swarm Optimisation Algorithms
This paper proposes an energy efficient control strategy for an induction machine (IM) based on two advanced particle swarm optimisation (PSO) algorithms. Two advanced PSO algorithms, known as the dynamic particle swarm optimisation (Dynamic PSO) and the chaos particle swarm optimisation (Chaos PSO) algorithms modify the algorithm parameters to improve the performance of the standard PSO algori...
متن کاملAn Empirical Comparison of Particle Swarm and Predator Prey Optimisation
In this paper we present and discuss the results of experimentally comparing the performance of several variants of the standard swarm particle optimiser and a new approach to swarm based optimisation. The new algorithm, which we call predator prey optimiser, combines the ideas of particle swarm optimisation with a predator prey inspired strategy, which is used to maintain diversity in the swar...
متن کاملParticle swarm optimisation with stochastic ranking for constrained numerical and engineering benchmark problems
Most of the real world science and engineering optimisation problems are non-linear and constrained. This paper presents a hybrid algorithm by integrating particle swarm optimisation with stochastic ranking for solving standard constrained numerical and engineering benchmark problems. Stochastic ranking technique that uses bubble sort mechanism for ranking the solutions and maintains a balance ...
متن کاملParticle Swarms and Nonextensive Statistics for Nonlinear Optimisation
Particle swarm methods are inspired from the dynamics of social interaction and employ information sharing to seek solutions to difficult optimisation problems. In this paper we introduce an approach that combines ideas from particle swarm optimisation (PSO) and the theory of nonextensive statistical mechanics. We develop two algorithms that adopt this approach and conduct an experimental study...
متن کاملA New Solution for the Cyclic Multiple-Part Type Three-Machine Robotic Cell Problem based on the Particle Swarm Meta-heuristic
In this paper, we develop a new mathematical model for a cyclic multiple-part type threemachine robotic cell problem. In this robotic cell a robot is used for material handling. The objective is finding a part sequence to minimize the cycle time (i.e.; maximize the throughput) with assumption of known robot movement. The developed model is based on Petri nets and provides a new method to calcul...
متن کاملImproving Vector Evaluated Particle Swarm Optimisation by Incorporating Nondominated Solutions
The Vector Evaluated Particle Swarm Optimisation algorithm is widely used to solve multiobjective optimisation problems. This algorithm optimises one objective using a swarm of particles where their movements are guided by the best solution found by another swarm. However, the best solution of a swarm is only updated when a newly generated solution has better fitness than the best solution at t...
متن کامل